Abstract

High-performance two-qubit gates have been reported with superconducting qubits coupled via a single-transmon coupler (STC). Most of them are implemented for qubits with a small detuning since reducing residual ZZ coupling for highly detuned qubits by an STC is challenging. In terms of the frequency crowding and crosstalk, however, highly detuned qubits are desirable. Here, we numerically demonstrate a high-performance parametric gate for highly detuned fixed-frequency qubits using a recently proposed tunable coupler called a double-transmon coupler (DTC). Applying an ac flux pulse, we can perform a maximally entangling universal gate (iSWAP) with an average fidelity over 99.99% and a short gate time of about 24 ns. This speed is comparable to resonance-based gates for slightly detuned tunable qubits. Moreover, using a dc flux pulse alternatively, we can achieve another kind of entangling gate called a CZ gate with an average fidelity over 99.99% and a gate time of about 18 ns. Given the flexibility and feasible settings, we can expect that the DTC will contribute towards realizing a high-performance quantum computer in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call