Abstract
We obtain a simple tensor representation of the kernel of the discrete d -dimensional gradient operator defined on tensor semi-staggered grids. We show that the dimension of the nullspace grows as O ( n d - 2 ) , where d is the dimension of the problem, and n is one-dimensional grid size. The tensor structure allows fast orthogonalization to the kernel. The usefulness of such procedure is demonstrated on three-dimensional Stokes problem, discretized by finite differences on semi-staggered grids, and it is shown by numerical experiments that the new method outperforms usually used stabilization approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.