Abstract

Graph-based sparsity learning is one of the most successful unsupervised feature selection methods that has been widely adopted in many real-world applications. However, traditional graph-based unsupervised feature selection methods have several drawbacks: (1) being time-consuming and unable to deal with large-scale problems; (2) having difficulty tuning the regularization parameter with the sparsity regularization term; and (3) being unable to find explicit solutions owing to the limitation of sparsity, that is, feature selection with the ℓ2,1-norm constrained problem. Thus, this paper proposes OLPPFS, a method to preserve the local geometric structure within the feature subspace by imposing the ℓ2,0-norm constraint. First, the linear mapping capability of the proposed model is enhanced using locality-preserving projections (LPPs), whichpreserve the local and global geometric manifold structure of the data while enhancing the ability to reconstruct data. Second, the graph-embedding learning method can accelerate the construction of a sparsity affinity graph and describe the intrinsic structure of the dataset well. More importantly, we propose a method for solving a projection matrix with the ℓ2,0-norm constrained, which can accurately select a explicit group of discriminative feature subsets. This method can yield a more accurate sparse projection matrix than the ℓ2,1-norm. We also adopt FOLPPFS, an effective anchor-based strategy to further accelerate our model with two flexible options. Extensive experiments on eight datasets demonstrate that the proposed method is superior to the other methods and can preserve a better local geometric structure of the dataset with less time consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.