Abstract

Design of the guided-mode resonance (GMR) grating filter, as one of the most important optical components, using the cultural algorithm (CA) is presented, for the first time. CA is an evolutionary algorithm (EA) which is easy-to-implement, flexible, inspired by the human cultural evolution, upon using the domain knowledge for reducing the search space as a metaheuristic optimization method. Reflection spectra of the designed GMR filter based on the CA is in good agreement with the previous simulation results. CA has both acceptable accuracy and enough high speed to optimize the complicated structures; therefore, a novel double-line asymmetrical transmitter (DLAT) is introduced and optimized as a complex grating-based optical component using the mentioned algorithm. The results show the transmittance at two different communication wavelengths (1.5039 and 1.6113 µm) using the combination of binary diffraction grating and customized photonic crystal (PhC) structure. Also, the DLAT shows the characteristics of a perfect transverse magnetic (TM) polarizer. Furthermore, we demonstrated the Talbot effect at the DLAT output which is so applicable in the optical usage, especially for the integrated optics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.