Abstract

Abstract Optical flow or image motion estimation is important in the area of computer vision. This paper presents a fast and reliable optical flow algorithm which produces a dense optical flow map by using fast cross correlation and 3D shortest path techniques. Fast correlation is achieved by using the box-filtering technique which is invariant to the size of the correlation window. The motion for each scanline or each column of the input image is obtained from the correlation coefficient volume by finding the best 3D path using dynamic programming techniques rather than simply choosing the position that gives the maximum cross correlation coefficient. Sub-pixel accuracy is achieved by fitting the local correlation coefficients to a quadratic surface. Typical running time for a 256×256 image is in the order of a few seconds on a 85 MHz computer. A variety of synthetic and real images have been tested, and good results have been obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.