Abstract

We have successfully designed a rapid method for producing dye sensitized solar cells (DSSC) using TiO2 films prepared by a modified dielectric barrier discharge jet (m-DBD jet) method which uses a DBD jet with elevated substrate temperatures from room temperature (RT) to 500 degrees C for approximately 10 min. This facile process has several advantages over other methods such as (1) eliminating additional coating and annealing steps, (2) creating films with high speed electron mobility via hierarchical pore clusters, and (3) allowing controlled TiO2 bandgap by N doping using atmospheric nitrogen instead of supplying N2 gas. Depending on reaction conditions, the resulting nanostructured materials have various sizes and shapes, with those deposited at the highest substrate temperatures displaying hierarchical walnut-shaped morphology as revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A possible growth mechanism of TiO2 nanoparticle clusters (TNC) is presented and discussed. Finally, this m-DBD jet method produces TNC films that exhibit approximately 4 times higher photo-conversion efficiency than the nanoparticle films by the unmodified DBD jet method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call