Abstract

Segmentation of the scene is a fundamental component in computer vision to find regions of interest. Most systems that aspire to run in real-time use a fast segmentation stage that considers the whole image, and then a more costly stage for classification. In this paper we present a novel approach to segment moving objects from images taken with a moving camera. The segmentation algorithm is based on a special representation of optical flow, on which u-disparity is applied. The u-disparity is used to indirectly find and mask out the background flow in the image, by approximating it with a quadratic function. Robustness in the optical flow calculation is achieved by contrast content filtering. The algorithm successfully segments moving pedestrians from a moving vehicle with few false positive segments. Most false positive segments are due to poles and organic structures, such as trees. Such false positives are, however, easily rejected in a classification stage. The presented segmentation algorithm is intended to be used as a component in a detection/classification framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.