Abstract

We present numerical simulations of 2D turbulent flow using a new model for the subfilter scales which are computed using a dynamic equation linking the subfilter scales with the resolved velocity. This equation is not postulated, but derived from the constitutive equations under the assumption that the non-linear interactions of subfilter scales between themselves are small compared to their distortions by the resolved scales. Such an assumption results in a linear stochastic equation for the subfilter scales, which can be numerically solved by a decomposition of the subfilter scales into localized wave packets. The wave packets are randomly produced by the smallest of the resolved scales. They are further transported by the resolved-scale velocity and they have wavenumbers and amplitudes which evolve according to the resolved strain. Performance of our model is compared with direct numerical simulations of decaying and forced turbulence. For the same resolution, numerical simulations using our model allow for a significant reduction of the computational time (of the order of 100 in the case we consider), and allow to achieve of significantly larger Reynolds number than the direct method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call