Abstract

Abstract An inverse coefficient problem for time-dependent wave equation in three dimensions is under consideration. We are looking for a spatially varying coefficient of this equation knowing special time integrals of the wave field in an observation domain. The inverse problem has applications to the reconstruction of the refractive index of an inhomogeneous medium, as well as to acoustic sounding, medical imaging, etc. In the article, a new linear three-dimensional Fredholm integral equation of the first kind is introduced from which it is possible to find the unknown coefficient. We present and substantiate a numerical algorithm for solving this integral equation. The algorithm does not require significant computational resources and a long solution time. It is based on the use of fast Fourier transform under some a priori assumptions about unknown coefficient and observation region of the wave field. Typical results of solving this three-dimensional inverse problem on a personal computer for simulated data demonstrate high capabilities of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call