Abstract

We introduce a new iterative scheme for solving linear ill-posed problems, similar to nonstationary iterated Tikhonov regularization, but with an approximation of the underlying operator to be used for the Tikhonov equations. For image deblurring problems, such an approximation can be a discrete deconvolution that operates entirely in the Fourier domain. We provide a theoretical analysis of the new scheme, using regularization parameters that are chosen by a certain adaptive strategy. The numerical performance of this method turns out to be superior to state-of-the-art iterative methods, including the conjugate gradient iteration for the normal equation, with and without additional preconditioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.