Abstract
Nonrigid image registrations require a large number of degrees of freedom (DoFs) to capture intersubject anatomical variations. With such high DoFs and lack of anatomical correspondences, algorithms may not converge to the globally optimal solution. In this work, we propose a fast, two-step nonrigid registration procedure with low DoFs to accurately register brain images. Our method makes use of a statistical deformation model based upon a principal component analysis of deformations learned from a manually-segmented dataset to perform an initial registration. We then follow with a low DoF nonrigid transformation to complete the registration. Our results show the same registration accuracy in terms of volume of interest overlap as high DoF transformations, but with a 96% reduction in DoF and 98% decrease in computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. IEEE International Symposium on Biomedical Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.