Abstract
Abstract This paper presents a fast way of implementing nonlinear model predictive control (NMPC) using the random shooting approach. Instead of calculating the optimal control sequence by solving the NMPC problem as a nonlinear programming (NLP) problem, which is time consuming, a sub-optimal, but feasible, sequence of control inputs is determined randomly. To minimize the induced sub-optimality, numerous random control sequences are selected and the one that yields the smallest cost is selected. By means of a motivating case study we demonstrate that the random shooting-based approach is superior, from a computational point of view, to state-of-the-art NLP solvers, and features a low level of sub-optimality. The case study involves a continuous stirred tank reactor where a fast multi-component chemical reaction takes place.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.