Abstract

Highly dynamic systems such as Micro Multirotor Aerial Vehicles (Micro-MAVs) require control approaches that enable safe operation where extreme limitations in embedded systems, such as energy, processing capability and memory, are present. Nonlinear model predictive control (NMPC) approaches can respect operational constraints in a safe manner. However, they are typically challenging to implement using embedded computers on-board of Micro-MAVs. Implementations of classic NMPC approaches rely on high-performance computers. In this work, we propose a fast nonlinear model predictive control approach that ensures the stabilization and control of Micro Multirotor Aerial Vehicles (Micro-MAVs). This aerial robotic system uses a low processing power board that relies solely on on-board sensors to localize itself, which makes it suitable for experiments in GPS-denied environments. The proposed approach has been verified in numerical simulations using processing capabilities that are available on Micro-MAVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call