Abstract

Scanning (electrical) impedance imaging (SII) is a novel high-resolution imaging modality that has the potential of imaging the electrical properties of thin biological tissues. In this paper, we apply the reciprocity principle to the modeling of the SII system and develop a fast nonlinear inverse method for image reconstruction. The method is fast because it uses convolution to eliminate the requirement of a numerical solver for the 3-D electrostatic field in the SII system. Numerical results show that our approach can accurately reveal the exact conductivity distribution from the measured current map for different 2-D simulation phantoms. Experiments were also performed using our SII system for a piece of butterfly wing and breast cancer cells. Two-dimensional current images were measured and corresponding quantitative conductivity images were restored using our approach. The reconstructed images are quantitative and reveal details not present in the measured images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.