Abstract

The nonlinear Fourier transform (NFT) is an approach that is similar to a conventional Fourier transform. In particular, NFT allows to analyze the structure of a signal governed by the nonlinear Schrödinger equation (NLSE). Recently, NFT applied to NLSE has attracted special attention in applications of fiber-optic communication. Improving the speed and accuracy of the NFT algorithms remains an urgent problem in optics. We present an approach that allows to find all variants of symmetric exponential splitting schemes suitable for the fast NFT (FNFT) algorithms with low complexity. One of the obtained schemes showed good numerical results in computing the continuous spectrum compared with other fast fourth-order NFT schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call