Abstract
ABSTRACT This article presents a study of the applicability of fast nonlinear analytical (FNA) models in predicting the global response of Chinese traditional timber-frame building with Dou-Gon under seismic excitation. Efforts are made to overcome challenges in establishing simplified calculation models, and the corresponding dynamic equations are derived considering the mechanical behavior of sliding column root, mortise-tenon joint and Dou-Gon (bracket sets). Furthermore, nonlinear time-history analysis is conducted under different seismic excitations. Through a verification study, a good correspondence is obtained with previous shake-table test results. Seismic response analysis is also conducted to investigate the energy dissipation of column root sliding, mortise-tenon joint, and Dou-Gon. Subsequently, peak responses of column root and roof under increased values of peak ground acceleration (PGA) are also analyzed. And then, seismic isolation ability and damping characteristics of the model are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.