Abstract

Sulfur compounds are major contaminants in diesel fuels and cause significant negative impacts on the environment, human health, and petroleum product quality. Oxidative desulfurization (ODS) has gained attention due to relatively mild operating conditions. However, ODS requires significant improvements in terms of productivity, reaction time, and conversion. This study reports the development of a highly efficient, rapid ODS process, in an oscillatory baffled reactor (OBR), to allow continuous, safe dibenzothiophene (DBT) removal. DBT conversion was studied as a function of temperature, residence time, oscillation frequency, and oscillation amplitude. By optimizing the operating conditions, up to 94 % DBT could be removed without further extraction in 3 min, at 80 °C, 4 Hz, and 6 mm. This is a substantial increase over comparable processes at this temperature and furthermore has been conducted in a reactor that scales up predictably, hence it is probable that this performance can be realized at an industrial scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call