Abstract
In spite of recent technological advances in NMR spectroscopy, its low sensitivity continues to be a major limitation particularly for the structural studies of membrane proteins. The need for a large quantity of a membrane protein and acquisition of NMR data for a long duration are not desirable. Therefore, there is considerable interest in the development of methods to speed up the NMR data acquisition from model membrane samples. In this study, we demonstrate the feasibility of acquiring two-dimensional spectra of an antimicrobial peptide (MSI-78; also known as pexiganan) embedded in isotropic bicelles using natural-abundance (15)N nuclei. A copper-chelated lipid embedded in bicelles is used to speed-up the spin-lattice relaxation of protons without affecting the spectral resolution and thus enabling fast data acquisition. Our results suggest that even a 2D SOFAST-HMQC spectrum can be obtained four times faster using a very small amount (∼3 mM) of a copper-chelated lipid. These results demonstrate that this approach will be useful in the structural studies of membrane-associated peptides and proteins without the need for isotopic enrichment for solution NMR studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.