Abstract

The present status of neutron beam production techniques above 20 MeV is discussed. Presently, two main methods are used; white beams and quasi-monoenergetic beams. The performances of these two techniques are discussed, as well as the use of such facilities for measurements of nuclear data for fundamental and applied research. Recently, two novel ideas on how to produce extremely intense neutron beams in the 100-500 MeV range have been proposed. Decay in flight of beta delayed neutron-emitting nuclei could provide beam intensities five orders of magnitudes larger than present facilities. A typical neutron energy spectrum would be essentially monoenergetic, i.e., the energy spread is about 1 MeV with essentially no low-energy tail. A second option would be to produce beams of (6)He and dissociate the (6)He nuclei into alpha particles and neutrons. The basic features of these concepts are outlined, and the potential for improved nuclear data research is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call