Abstract

In this letter, we study efficient near-field beam training design for the extremely large-scale array (XL-array) communication systems. Compared with the conventional far-field beam training method that searches for the best beam direction only, the near-field beam training is more challenging since it requires a beam search over both the angular and distance domains due to the spherical wavefront propagation model. To reduce the near-field beam-training overhead based on the two-dimensional exhaustive search, we propose in this letter a new two-phase beam training method that decomposes the two-dimensional search into two sequential phases. Specifically, in the first phase, the candidate angles of the user are determined by a new method based on the conventional far-field codebook and angle-domain beam sweeping. Then, a customized polar-domain codebook is employed in the second phase to find the best effective distance of the user given the shortlisted candidate angles. Numerical results show that our proposed two-phase beam training method significantly reduces the training overhead of the exhaustive search and yet achieves comparable beamforming performance for data transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.