Abstract
Nanorod diffusion in polymer melts is faster than predicted by the continuum model (CM). Rutherford backscattering spectrometry is used to measure the concentration profile of titanium dioxide (TiO2) nanorods (L = 43 nm, d = 5 nm) in a polystyrene (PS) matrix having molecular weights (M) from 9 to 2000 kDa. In the entangled regime, the tracer diffusion coefficients (D) of TiO2 decrease as the M-1.4, whereas the CM predicts DCM ∼ M-3.0 using the measured zero-shear viscosity of TiO2(1 vol %): PS(M) blends. By plotting D/DCM versus M/Me, where Me is the entanglement molecular weight, diffusion is enhanced by a factor of 10-103 as M/Me increases. The faster diffusion is attributed to decoupling of nanorod diffusion from polymer relaxations in the surrounding matrix, which is facilitated by the nanorod dimensions (i.e., L greater than and d less than the entanglement mesh size, 8 nm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.