Abstract

The heavy-tailed mutation operator proposed in Doerr et al. (GECCO 2017), called fast mutation to agree with the previously used language, so far was proven to be advantageous only in mutation-based algorithms. There, it can relieve the algorithm designer from finding the optimal mutation rate and nevertheless obtain a performance close to the one that the optimal mutation rate gives. In this first runtime analysis of a crossover-based algorithm using a heavy-tailed choice of the mutation rate, we show an even stronger impact. For the \((1+(\lambda ,\lambda ))\) genetic algorithm optimizing the OneMax benchmark function, we show that with a heavy-tailed mutation rate a linear runtime can be achieved. This is asymptotically faster than what can be obtained with any static mutation rate, and is asymptotically equivalent to the runtime of the self-adjusting version of the parameters choice of the \((1+(\lambda ,\lambda ))\) genetic algorithm. This result is complemented by an empirical study which shows the effectiveness of the fast mutation also on random satisfiable MAX-3SAT instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.