Abstract
We introduce a new multiscale Gaussian beam method for the numerical solution of the wave equation with smooth variable coefficients. The first computational question addressed in this paper is how to generate a Gaussian beam representation from general initial conditions for the wave equation. We propose fast multiscale Gaussian wavepacket transforms and introduce a highly efficient algorithm for generating the multiscale beam representation for a general initial condition. Starting from this multiscale decomposition of initial data, we propose the multiscale Gaussian beam method for solving the wave equation. The second question is how to perform long time propagation. Based on this new initialization algorithm, we utilize a simple reinitialization procedure that regenerates the beam representation when the beams become too wide. Numerical results in one, two, and three dimensions illustrate the properties of the proposed algorithm. The methodology can be readily generalized to treat other wave propagat...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.