Abstract
Speckle noise is a multiplicative type of noise commonly seen in medical and remote sensing images. It gives a granular appearance that degrades the quality of the recorded images. These speckle noise components need to be mitigated before the image is used for further processing and analysis. This paper presents a novel approach for removing granular speckle noise in gray scale images. We used an efficient multiscale image representation scheme named fast multiscale directional filter bank (FMDFB) along with simple threshold methods such as Vishushrink for image processing. It is a perfect reconstruction framework that can be used for a wide range of image processing applications because of its directionality and reduced computational complexity. The FMDFB-based speckle mitigation is appealing over other traditional multiscale approaches such as wavelets and Contourlets. Our experimental results show that the despeckling performance of the proposed method outperforms the wavelet and Contourlet-based despeckling methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.