Abstract
The fast multipole boundary element method (FMBEM), which is an efficient BEM that uses the fast multipole method (FMM), is known to suffer from instability at low frequencies when the well-known high-frequency diagonal form is employed. In the present paper, various formulations for a low-frequency FMBEM (LF-FMBEM), which is based on the original multipole expansion theory, are discussed; the LF-FMBEM can be used to prevent the low-frequency instability. Concrete computational procedures for singular, hypersingular, Burton-Miller, indirect (dual BEM), and mixed formulations are described in detail. The computational accuracy and efficiency of the LF-FMBEM are validated by performing numerical experiments and carrying out a formal estimation of the efficiency. Moreover, practically appropriate settings for numerical items such as truncation numbers for multipole/local expansion coefficients and the lowest level of the hierarchical cell structure used in the FMM are investigated; the differences in the efficiency of the LF-FMBEM when different types of formulations are used are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.