Abstract

In many real-world tasks, particularly those involving data objects with complicated semantics such as images and texts, one object can be represented by multiple instances and simultaneously be associated with multiple labels. Such tasks can be formulated as multi-instance multi-label learning (MIML) problems, and have been extensively studied during the past few years. Existing MIML approaches have been found useful in many applications; however, most of them can only handle moderate-sized data. To efficiently handle large data sets, in this paper we propose the MIMLfast approach, which first constructs a low-dimensional subspace shared by all labels, and then trains label specific linear models to optimize approximated ranking loss via stochastic gradient descent. Although the MIML problem is complicated, MIMLfast is able to achieve excellent performance by exploiting label relations with shared space and discovering sub-concepts for complicated labels. Experiments show that the performance of MIMLfast is highly competitive to state-of-the-art techniques, whereas its time cost is much less. Moreover, our approach is able to identify the most representative instance for each label, and thus providing a chance to understand the relation between input patterns and output label semantics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.