Abstract

A systematic study on the effect of molecular structure on the photoinitiated polymerization of acrylates was undertaken. Initially, the research was focused on the effect of hydrogen bonding, and it was found that preorganization via hydrogen bonding enhances the maximum rate of polymerization (Rp). This hydrogen bonding facilitated preorganization also affected the tacticity of the resultant polymer. Next, the effect of polarity as represented by the calculated dipole moment (μcalc) of a given monomer was investigated. A direct linear correlation between Rp and the calculated Boltzmann-averaged dipole moment (μcalc) was observed. The Rp−μcalc correlation holds for pure monomers, mixtures of monomers, and even mixtures of monomers with inert solvents. This correlation enables the rational design of monomers with a required reactivity. In addition, these studies suggest that the propagation step of polymerization is influenced by hydrogen bonding while the dipole moment influences the termination rate con...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.