Abstract

Modular multi-exponentiation ∏ i = 1 n M i E i ( mod N ) is a very important but time-consuming operation in many modern cryptosystems. In this paper, a fast modular multi-exponentiation is proposed utilizing the binary-like complex arithmetic method, complement representation method and canonical-signed-digit recoding technique. By performing complements and canonical-signed-digit recoding technique, the Hamming weight (number of 1’s in the binary representation or number of non-zero digits in the binary signed-digit representations) of the exponents can be reduced. Based on these techniques, an algorithm with efficient modular multi-exponentiation is proposed. For modular multi-exponentiation, in average case, the proposed algorithm can reduce the number of modular multiplications (MMs) from 1.503 k to 1.306 k, where k is the bit-length of the exponent. We can therefore efficiently speed up the overall performance of the modular multi-exponentiation for cryptographic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.