Abstract
In this paper, an advanced control strategy, i.e., model predictive control (MPC), is applied to control and coordinate urban traffic networks. However, due to the nonlinearity of the prediction model, the optimization of MPC is a nonlinear nonconvex optimization problem. In this case, the online computational complexity becomes a big challenge for the MPC controller if it is implemented in a real-life traffic network. To overcome this problem, the online optimization problem is reformulated into a mixed-integer linear programming (MILP) optimization problem to increase the real-time feasibility of the MPC control strategy. The new optimization problem can be very efficiently solved by existing MILP solvers, and the global optimum of the problem is guaranteed. Moreover, we propose an approach to reduce the complexity of the MILP optimization problem even further. The simulation results show that the MILP-based MPC controllers can reach the same performance, but the time taken to solve the optimization becomes only a few seconds, which is a significant reduction, compared with the time required by the original MPC controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.