Abstract
The enhanced surface mobility in metallic glasses (MGs) has been a constant source of fascination due to its unique mechanical properties. We show experimentally that the mobile surface layer of MGs functions as a lubricating layer in friction experiments, which is evidenced by a reduction of a friction coefficient of 50% or less and suppression of dissipative stick-slip behavior with decreasing scratch depth down to nanoscale in the various MGs. The lubrication mechanism could be attributed to easier shearing of the mobile surface layer induced by homogeneous plastic flow. Importantly, the thickness of the self-lubricating layer is inversely proportional to glass transition temperature with a higher homologous temperature yielding a larger thickness. These results extend the fundamental understanding of the ubiquitous MG surface and present a path for the rational design of self-lubricating materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.