Abstract

Dust grains influence many aspects of star formation, including planet formation and the opacities for radiative transfer, chemistry, and the magnetic field via Ohmic, Hall, as well as ambipolar diffusion. The size distribution of the dust grains is the primary characteristic influencing all these aspects. Grain size increases by coagulation throughout the star formation process. In this work, we describe numerical simulations of protostellar collapse using methods described in earlier papers of this series. We compute the evolution of the grain size distribution from coagulation and the non-ideal magnetohydrodynamics effects self-consistently and at low numerical cost. We find that the coagulation efficiency is mostly affected by the time spent in high-density regions. Starting from sub-micron radii, grain sizes reach more than 100 µm in an inner protoplanetary disk that is only 1000 yr old. We also show that the growth of grains significantly affects the resistivities, while also having an indirect effect on the dynamics and angular momentum of the disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.