Abstract
We describe a class of algorithms for evaluating posterior moments of certain Bayesian linear regression models with a normal likelihood and a normal prior on the regression coefficients. The proposed methods can be used for hierarchical mixed effects models with partial pooling over one group of predictors, as well as random effects models with partial pooling over two groups of predictors. We demonstrate the performance of the methods on two applications, one involving U.S. opinion polls and one involving the modeling of COVID-19 outbreaks in Israel using survey data. The algorithms involve analytical marginalization of regression coefficients followed by numerical integration of the remaining low-dimensional density. The dominant cost of the algorithms is an eigendecomposition computed once for each value of the outside parameter of integration. Our approach drastically reduces run times compared to state-of-the-art Markov chain Monte Carlo (MCMC) algorithms. The latter, in addition to being computationally expensive, can also be difficult to tune when applied to hierarchical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.