Abstract

The computational approach applicable for the molecular dynamics (MD)-based techniques is proposed to predict the ligand-protein binding affinities dependent on the ligand stereochemistry. All possible stereoconfigurations are expressed in terms of one set of force-field parameters [stereoconfiguration-independent potential (SIP)], which allows for calculating all relative free energies by only single simulation. SIP can be used for studying diverse, stereoconfiguration-dependent phenomena by means of various computational techniques of enhanced sampling. The method has been successfully tested on the β2-adrenergic receptor (β2-AR) binding the four fenoterol stereoisomers by both metadynamics simulations and replica-exchange MD. Both the methods gave very similar results, fully confirming the presence of stereoselective effects in the fenoterol-β2-AR interactions. However, the metadynamics-based approach offered much better efficiency of sampling which allows for significant reduction of the unphysical region in SIP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.