Abstract

To circumvent the prohibitive complexity of linear minimum mean square error detection in a massive multiple-input multiple-output system, several iterative methods have been proposed. However, they can still be too complex and/or lead to non-negligible performance degradation. In this letter, a Chebyshev acceleration technique is proposed to overcome the limitations of iterative methods, accelerating the convergence rates and enhancing the performance. The Chebyshev acceleration method employs a new vector combination, which combines the spectral radius of the iteration matrix with the receiver signal, and also the optimal parameters of Chebyshev acceleration have also been defined. A detector based on iterative algorithms requires pre-processing and initialisation, which enhance the convergence, performance, and complexity. To influence the initialisation, the stair matrix has been proposed as the first start of iterative methods. The performance results show that the proposed technique outperforms state-of-the-art methods in terms of error rate performance, while significantly reducing the computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.