Abstract

In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the "quack" R package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.