Abstract

Today, many industrial applications require components that work under extreme conditions, especially at very high temperatures (>1200 °C) for a long time. An excellent combination of properties such as low thermal conductivity, low coefficient of thermal expansion and high chemical resistance are required for such applications. Advanced ceramic materials based on zircon-zirconia composites (ZrSiO4–ZrO2) possess these properties, thus making them attractive for, i.e., high-level radioactive waste immobilisation. The main drawback of these materials are the high temperatures and long residence times required to sinter them and obtain high densities, which entails high energy consumption and costs. Therefore, non-conventional microwave sintering is a very powerful and efficient technique capable of reducing sintering temperatures and holding times. The objective of this study is to evaluate the microwave sinterability of zircon-zirconia powders obtained by colloidal methods (80–20 vol% and 20–80 vol% ZrSiO4–ZrO2). A stability study of the phases present was carried out by X-ray diffraction and the mechanical and microstructural properties were evaluated in order to obtain the best materials with outstanding final properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.