Abstract

We examined muscle burst patterns and burst frequencies for a distinct form of repetitive leg movement recently identified in chick embryos at embryonic day (E)18 that had not been previously studied. The aim was to determine if burst frequencies during repetitive leg movements were indicative of a rhythm burst generator and if maturing muscle afferent mechanisms could modulate the rhythm. Electromyographic recordings synchronized with video were performed in ovo during spontaneous movement at E15, E18, and E20. Multiple leg muscles were rhythmically active during repetitive leg movements at E18 and E20. Rhythmic activity was present at E15 but less well formed. The ankle dorsi flexor, tibialis anterior, was the most reliably rhythmic muscle because extensor muscles frequently dropped out. Tibialis anterior burst frequencies ranged from 1 to 12 Hz, similar to frequencies during fast locomotor burst generation in lamprey. The distribution in burst frequencies at E18 was greatest at lower frequencies and similar to locomotor data in hatchlings. Relative distributions were more variable at E20 and shifted toward faster frequencies. The shell wall anterior to the leg was removed in some experiments to determine if environmental constraints associated with growth contributed to frequency distributions. Wall removal had minimal impact at E18. E20 embryos extended their foot outside the egg, during which faster frequencies were observed. Our findings provide evidence that embryonic motility in chick may be controlled by a fast locomotor burst generator by E15 and that modulation by proprioceptors may emerge between E18 and E20.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.