Abstract
The development of new analytical systems and the improvement of the existing ones to obtain high-resolution measurements of chemical markers in samples from ice cores, is one of the main challenges the paleoclimatic scientific community is facing. Different chemical species can be used as markers for tracking emission sources or specific environmental processes. Although some markers, such as methane sulfonic acid (a proxy of marine productivity), are commonly used, there is a lack of data on other organic tracers in ice cores, making their continuous analysis analytically challenging. Here, we present an innovative combination of fast liquid chromatography coupled with tandem mass spectrometry (FLC-MS/MS) to continuously determine organic markers in ice cores. After specific optimization, this approach was applied to the quantification of vanillic and syringic acids, two specific markers for biomass burning. Using the validated method, detection limits of 3.6 and 4.6 pg mL–1 for vanillic and syringic acids, respectively, were achieved. Thanks to the coupling of FLC-MS/MS with the continuous flow analytical system, we obtained one measurement every 30 s, which corresponds to a sampling resolution of a sample every 1.5 cm with a melting rate of 3.0 cm min–1. To check the robustness of the method, we analyzed two parallel sticks of an alpine ice core over more than 5 h. Vanillic acid was found with concentrations in the range of picograms per milliliter, suggesting the combustion of coniferous trees, which are found throughout the Italian Alps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.