Abstract

A method for the Glaser coupling reaction of alkynes by using a vibration ball mill has been developed. The procedure avoids the use of ligands and solvents during the reaction. Aryl- and alkyl-substituted terminal alkynes undergo homocoupling if coground with KF-Al(2)O(3) and CuI as a milling auxiliary and catalyst. Furthermore, an alternative protocol has been developed incorporating 1,4-diazabicyclo[2.2.2]octane (DABCO) as an additional base allowing the use of KF-Al(2)O(3) with a lower KF loading. Besides Cu salts, the homocoupling of phenylacetylene is also catalyzed by Ni or Co salts, as well as by PdCl(2). TMS-protected phenylacetylene could be directly converted into the homocoupling product after in situ deprotection of the alkyne by fluoride-initiated removal of the trimethylsilyl group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call