Abstract

The direct recycling of cathode materials in lithium-ion batteries is important for environmental protection and resource conservation. The key regeneration processes are composition replenishment and atom rearrangement, both of which depend on the migration and diffusion of atoms. However, for the direct recycling of degraded LiNi0.5 Co0.2 Mn0.3 O2 (D-NCM523) cathode, the irreversible phase transitions that accumulate during the long-term cycles block the Li diffusion channels with a high diffusion energy barrier, making it difficult to fully repair the layered structure and resulting in rapid capacity decay. To address the challenge, fast Li replenishment channels are rebuilt to regulate the surface phase and effectively assist the regeneration process with a reduced energy barrier. This method reduces the amount of Li supplement by >75% and shortens the sintering time (only 2h) to fully regenerate D-NCM523, compared to general direct recycling methods. The regenerated NCM523 (LCMB-NCM523) exhibits a satisfactory repaired specific capacity of 160mAhg-1 and excellent cycling stability, retaining 78% of its capacity after 300 cycles. In addition, LCMB-NCM523 is recycled with improved thermal decomposition peak temperature and enables 200 cycles even at 60°C, greatly improving safety. This work proposes a promising way for the large-scale direct regeneration of layered cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.