Abstract
Abstract We present a new oracle inequality for generic regularized empirical risk minimization algorithms learning from stationary α -mixing processes. Our main tool to derive this inequality is a rather involved version of the so-called peeling method. We then use this oracle inequality to derive learning rates for some learning methods such as empirical risk minimization (ERM), least squares support vector machines (SVMs) using given generic kernels, and SVMs using the Gaussian RBF kernels for both least squares and quantile regression. It turns out that for i.i.d. processes our learning rates for ERM and SVMs with Gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates, while in the remaining cases our rates are at least close to the optimal rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.