Abstract

We consider the k-Nearest Neighbour problem in a two-dimensional Euclidean plane with obstacles (OkNN). Existing and state of the art algorithms for OkNN are based on incremental visibility graphs and as such suffer from a well known disadvantage: costly and online visibility checking with quadratic worst-case running times. In this work we develop a new OkNN algorithm which avoids these disadvantages by representing the traversable space as a collection of convex polygons; i.e. a Navigation Mesh. We then adapt an recent and optimal navigation mesh algorithm, Polyanya, from the single-source single-target setting to the the multi-target case. We also give two new heuristics for OkNN. In a range of empirical comparisons we show that our approach can be orders of magnitude faster than competing methods that rely on visibility graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.