Abstract

A shortcoming of current coronary MRA methods with thin-slab 3D acquisitions is the time-consuming examination necessitated by extensive scout scanning and precise slice planning. To improve ease of use and cover larger parts of the anatomy, it appears desirable to image the entire heart with high spatial resolution instead. For this purpose, an isotropic 3D-radial acquisition was employed in this study. This method allows undersampling of k-space in all three spatial dimensions, and its insensitivity to motion enables extended acquisitions per cardiac cycle. We present initial phantom and in vivo results obtained in volunteers that demonstrate large volume coverage with high isotropic spatial resolution. We were able to visualize all major parts of the coronary arteries retrospectively from the volume data set without compromising the image quality. The scan time ranged from 10 to 14 min during free breathing at a heart rate of 60 bpm, which is comparable to that of a thin-slab protocol comprising multiple scans for each coronary artery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.