Abstract

A fast affinity method for the semi-preparative isolation of recombinant Protein G from E. coli cell lysate is proposed. Rigid, macroporous affinity discs based on a glycidyl methacrylate–co-ethylene dimethacrylate polymer were used as chromatographic supports. The specific ligands (here human immunoglobulin G, hIgG) were immobilized by the one-step reaction between native epoxy groups of the polymer surface and ϵ-amino groups of the IgG molecules. No intermediate spacer was necessary to reach full biological activity of the ligand. The globular affinity ligands are located directly on the pore wall surface and are thereby freely accessible to target molecules (here Protein G) migrating with the mobile phase through the pores. It is shown that the conditions chosen for the hIgG immobilization do not involve an active site of the protein and thus do not bias the formation of the affinity complex. Chromatographically determined constants of dissociation of hIgG–Protein G affinity complexes confirm the high selectivity of this separation method. Two different aspects of the affinity separation are discussed, which differ mostly in terms of scale. In disc chromatography, high volumetric flow velocities are possible because of the small backpressure. Since in addition the mass transfer is more efficient, it becomes possible to achieve very short analysis times. The discs proposed can be used in a single-step enrichment of Protein G from lysates of non-pathogenic E. coli. Gel electrophoresis data are used to demonstrate the high degree of purity achieved for the final product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.