Abstract
AbstractIris is a new biometric emerging in recent years. Iris identification is gradually applied to a number of important areas because of its simplicity, fast identification and low error recognition rate. Typically, an iris recognition system includes four parts: iris localization, feature extraction, coding and recognition. Among it, iris localization is a critical step. In the paper, a fast iris localization algorithm based on improved Hough transform was proposed. First, the algorithm builds gray histogram of iris image to analyze the gray threshold of the iris boundary. Then takes the pupil image binarization, using corrosion and expansion or region growing to remove noise. As a result, it obtains the radius of the inner edge. Then, we conduct iris location based on Hough transform according to the geometrical feature and gray feature of the human eye image. By narrowing searching scope, localization speed and iris localization accuracy are improved. Besides, it has better robustness for real-time system. Experimental results show that the proposed method is effective and encouraging.Keywordsiris recognitioniris localizationregion growinggray projectionHough transform
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.