Abstract
Fast ions are well confined in the stochastic magnetic field of the multiple-helicity (MH) reversed-field pinch (RFP), with fast ion confinement times routinely a factor of 5 to 10 higher than thermal confinement time. Recent experiments have examined the behavior and confinement of beam-born fast ions in the three-dimensional (3D) helical RFP state. In lower current discharges, where the onset of the helical state is uncertain, high power neutral beam injection (NBI) tends to suppress the transition to the single helicity mode. In high current discharges (Ip ∼ 0.5 MA), where the onset of n = 5 single helicity is quite robust, a short blip of NBI is used to probe the confinement of fast ions with minimal perturbation to the 3D equilibrium. The fast ion confinement time is measured to be substantially lower than fast ions in comparable MH RFP states, and there is a strong dependence on the strength of the helical perturbation. The established helical equilibrium is stationary in the laboratory frame but the locking occurs over the entire range of possible phase with respect to the Madison Symmetric Torus vessel. This effectively scans both the location of the NBI with respect to the helical structure and the pitch of the NBI-born fast ions. Fast ion confinement is observed to be insensitive to this angle, and in fact counter-NB injection into quasi-single helicity discharges shows fast ion confinement times similar to co-injection cases, in contrast to the MH RFP, where counter-injected fast ion confinement time is substantially lower.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.