Abstract

Correlated interval representations of range uncertainty offer an attractive solution to approximating computations on statistical quantities. The key idea is to use finite intervals to approximate the essential mass of a probability density function (pdf) as it moves through numerical operators; the resulting compact interval-valued solution can be easily interpreted as a statistical distribution and efficiently sampled. This paper first describes improved interval-valued algorithms for asymptotic wave evaluation (AWE)/passive reduced-order interconnect macromodeling algorithm (PRIMA) model order reduction for tree-structured interconnect circuits with correlated resistance, inductance, and capacitance (RLC) parameter variations. By moving to a much faster interval-valued linear solver based on path-tracing ideas, and making more optimal tradeoffs between interval- and scalar-valued computations, the delay statistics roughly 10/spl times/ faster than classical Monte Carlo (MC) simulation, with accuracy to within 5% can be extracted. This improved interval analysis strategy is further applied in order to build statistical effective capacitance (C/sub eff/) models for variational interconnect, and show how to extract statistics of C/sub eff/ over 100/spl times/ faster than classical MC simulation, with errors less than 4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.