Abstract

We introduce a method for achieving a short response time in homogeneously aligned liquid crystal cells by twodimensional confinement of LCs with virtual walls. When an electric field is applied to in-plane switching (IPS) and fringe-field switching (FFS) cells with interdigitated electrodes parallel to the LC alignment direction, virtual walls are built so that the switching speed can be increased several-fold. We also introduce an interdigitated pixel electrode structure with alternating tilts for a much wider viewing angle by aligning the LCs without a pretilt. In addition to a short response time and wide viewing angle, this device allows a much larger deviation of the LC alignment direction which is essential for mass production. Moreover, LCs with negative dielectric anisotropy can be used to minimize the transmittance decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.