Abstract
The semi-varying coefficient models are widely used in the application of finance, economics, medical science and many other areas. In general, the functional coefficients are estimated by local smoothing methods, e.g. local linear estimator. So the computation cost is severe because one should point-wisely estimate the value of a coefficient function. In this paper, we give an insight into the trade-off between statistical efficiency and computation simplicity and proposes a fast inference procedure, local average estimator. The proposed method is easy to implement and avoid repeat estimation since it approximates the coefficient functions with piecewise constants. Though the local average estimator is not asymptotically optimal, it is still efficient enough for further inference. Thus, three tests are derived to check whether a coefficient is constant. The experimental evidence shows that when there is limited room for improving the asymptotic efficiency, a proper trade-off between statistical efficiency and computation simplicity may improve the finite-sample performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.