Abstract

Endmember extraction (EE) is a prerequisite task for spectral analysis of hyperspectral imagery. In all kinds of EE algorithms, maximum simplex volume-based ones, such as simplex growing algorithm (SGA) and N-FINDR algorithm, have been widely used for their fully automated and efficient performance. However, implementation of the algorithms needs dimension reduction of original data, and the algorithms include innumerable volume calculation. This leads to a low speed of the algorithms and thus becomes a limitation to their applications. In this paper, a simple distance measure is presented, and then, fast SGA and fast N-FINDR algorithm are constructed based on a proposed distance measure, which is free of dimension reduction and makes use of distance measure instead of volume evaluation to speed up the algorithm. The complexity of the proposed methods is compared with the original algorithms by theoretical analysis. Experiments show that the implementation of the two improved EE algorithms is much faster than that of the two original maximum simplex volume-based EE algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.